
Foreword

As part of our ongoing commitment to sustainability within the automotive aftermarket, the FAAS Working Group 3 has reached a consensus on adopting the **Catena-X Product Carbon Footprint rulebook (C-X PCF)**, specifically the current version 3.

The following annotations are not aiming to alter C-X PCF but rather to facilitate and clarify its usage in the automotive aftermarket.

How to use the document?

On the following pages, we present the annotation () and recommendations (). For your convenience, we indicate which chapter from the **C-X PCF Rulebook** they refer to. When browsing the document online, by clicking on the page number, you will be redirected to the specific section of the source document.

While section 4.2 System boundaries explicitly quotes on page 15:

Despite the fact that the end-of-life (EoL) stage is excluded from the scope of this document the PCF-rules described in this document are applicable to the EoL processes as well and specifically shall be applied to quantify the carbon footprint of secondary material or reuse/reman of components

the list of system boundaries in the aftermarket shall include as additional element not mentioned in the rulebook:

Logistics in the aftermarket distribution

Annotation 2

5.2.1. Emissions from transportation (page 18)

In addition to emissions from production and manufacturing, there are also emissions from the transportation of products. All upstream transportation processes shall be included in the product carbon footprint, i.e., included in the cradle-to-gate system boundaries. The same applies to in-house logistics unless cut-off rules apply (see 4.2.1 Cut-off-Rules).

Transport within a plant (e.g. by forklifts, automatic logistics systems, cranes, etc.) can be neglected due to the minor impact. An info about neglected inner plant transport shall be given in the LCA documentation.

This section deals with transportation from a supplier.

Recommendation 1

5.2.1 Emissions from transportation (closing on page 21)

Route planning tools for the respective transport vehicle shall be applied using the minimum trip time and/or cost as optimization criterion. Emissions should be based on transport tonnage, default load and emissions intensity factors differentiated by mode, fuel and distance.

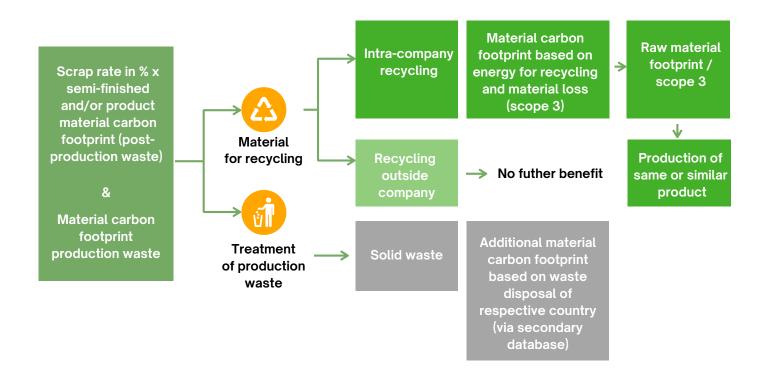
Annotation 3

5.2.2. Accounting for waste treatment (pages 21-23)

The carbon footprint of scrap and production waste must be considered in the product carbon footprint. To consider the further handling of the waste, all production waste and scrap should be categorized into 3 groups:

- · Intra-company recycling
- Recycling outside company
- Solid waste

Intra-company recycling: The material is recycled within the company and used for the same or similar products. The energy consumption (scope 1 and 2) and material losses (scope 3) during the recycling processes (e.g., shredding, re-granulating of plastics) must be assessed. The recirculation of the recyclate typically leads to a reduction of the raw material footprint.


The CO2 saving are hence considered as a reduction of the scope 3 footprint. The transport of waste within a production plant can be neglected due to low impact on carbon emission.

Recycling outside company: The material is recycled outside the company, and it is ensured by contract that the material is not incinerated. In this case, no further CO2 footprint must be considered for the PCF.

Solid waste: All general waste with no specific further use (recycling) can be considered as solid waste. The footprint depends on the local handling of waste (landfill, incineration). Secondary data for the specific disposal option can be used.

Annotation 4

5.2.4.1 Electricity from a directly and dedicated connected generator (page 24)

If electricity is produced on site with a direct connection to the power generator (e.g., photovoltaic plant on the roof, wind park beside the production facility, own fossil power plant) or a direct connection to a power generator operated by a power supplier, the amount of electricity consumed by this power generator and the related emission factor shall be used if no contractual instruments have been sold to a third party. Otherwise, the country-specific residual grid mix shall be used.

As verification of using electricity from the company's own facilities, proof of installation of the company's own generation technology as well as a meter reading shall be available. The amount of electricity and the period of the meter reading shall be equal to the amount of electricity required and the respective period. In addition, the meter reading **should** be confirmed by a third party to prove that the specified generation technology, the respective period and the amount of electricity generated are in fact as stated.

Please remark that the third-party confirmation is not mandated. Even though it requires additional effort, it does create value.

Recommendation 2

6.2 Secondary data (pages 30-32)

Until a Catena-X approach is clearly defined and made available to companies, aftermarket companies should apply secondary values retrieved from reliable databases.

Driving Sustainability in the Automotive Aftermarket

Join us

at FAAS as we drive positive change, create a accountable aftermarket, and shape a sustainable future for the automotive industry.

Follow our activities

@FAAS-AUTOMOTIVE-SUSTAINABILITY

SECRETARIAT@FAASFORUM.EU

WWW.FAASFORUM.EU